DECISION SUPPORT SYSTEMS (DSS)

- better decisions, faster
- thriving vs. just surviving e.g.
improved product design
target the right market
- Based on enterprise-wide data

PROBLEMS/CHALLENGES FOR DSS

- No shortage of data
- Collection vs. analysis goals
- Problems relate to
- access
- consistency
- timeliness
- accuracy
'"We have mountains of data, but we can't get access to them.'"
'"We want to see comparison of yesterdays sales compared to same day last week, month, etc. by mid-morning."
"Everyone knows that some of the supplier data is dirty."
- Data Warehousing addresses these challenges

Figure 12.3 The data sandwich
A grocery store is optimized for operations. It is designed and built to make re-stocking the shelves as easy as possible. The onus is placed on the customer to know the locations of every item. A convenience store such as $7-11$ is optimized for consumers. The onus is placed on the operational team to pre-build products that are desired by customers. To be successful and sustainable in the data mart business, you must build 7-11s.

Product	Market	Time	Units
Camera	Boston	Q1	1200
Camera	Boston	Q2	1500
(amera	Boston	Q3	1800
Camera	Boston	Q4	2100
Camera	Seattle	Q1	1000
(amera	Seattle	Q2	1100
Iuner			
	Denver	Q1	250
-	Denver	Q2	300

Otowe 13.1 Relational tables and multidimensional cubes.

Brand	Dollar Sales	Unit Sales
Axon	780	263
Framis	1044	509
Widget	213	444
Zapper	95	39
	$1 Q-1995$	

2. Definition of a Data Warehouse

A Data Warehouse is a Subject Oriented, Integrated, Time Variant, Non-volatile collection of data that is used in the support of management's decision making tools.

- Subject Oriented

Information in the data warehouse is subect oriented. Buisiness information is classified based on those subjects that are of interest to the enterprise. For a manufacturer, these subjects may be customers, products, accounts and vendors. For a university, subjects may be students, classes, and instructors. For a hospital, subjects may be patients, medical staff, medications etc.

- Integrated

Data is defined once to meet the needs of the entire enterprise rather than a single application. The reports generated for different organizations will contain the same results.
suburits

- Non-volatile

New data is always appended to the database, rather than replaced. The database continuosly absorbs new data, integrating it with the previous data.

- Time-váriant

The data warehouse includes historical data to be used in identifying and evaluating trends.

We can characterize a data warehouse by contrasting how business data stored in a data warehouse differs from the operational data used by production applications.

Operational Database	Data Warehouse
Operational Data	Business Data for Information
Application Oriented	Subject Oriented
Current	Current Plus Historical
Details	Details Plus Summaries
Changing Continuously	Stable

Mistakes to Avoid in Defining Data Warehousing Architecture

- Do not develop "virtual" data warehouses
- Do not develop "stovepipe" data marts that are not integrated across business areas
- Do not implement enterprise data warehouse as a single, large, top-down development effort
- Do not populate data warehouse with "dirty" source data containing missing, inconsistent, and erroneous data values

Specifications of User View

62 Chapter 2 Data Warehouse and OLAP Technology for Data Mining

Figure 2 - -1 1
Modeling business queries: a stumer model.
4.13

A Star-Net Query Model

Factors for Partial Cuboid Materialization

- Potential access frequency of generated cuboid,
- the size of the generated cuboid, and
- how materialization of one cuboid may benefit computation of other cuboids in the lattice.

Example 2, 55 Suppose that we define a data cube for AllElectronics of the form "sales [time, item, location]: sum(sales_in_dollars)". The dimension hierarchies used are "day < month < quarter < year" for time, "item_name <brand < type" for item, and "street < city < province_or_state < country" for locatibn.

Suppose that the query to be processed is on brand, province_or_state\}, with the selection constant "year=2000". Also, suppose that there are four materialized cuboids available, as follows:
cuboid 1: \{item_name, cin, year\}

- cuboid 2: \{brand, country, year\}
cuboid 3: \{brand, province_or_state, year\}
Le cuboid 4: $\{$ item_name, province_or_state $\}$ where year $=2000 d \theta i$

Cuboid Indexing Specifications

Indexirig OLAP Eata. Bitmap Index

- Undex on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: \# of records in the base table
- The i-th bit is set if the i-th row of the base table has the value for the indexed column
- mot suitable for high cardinality domains

Base table			Index on Region				Index on Type		
Curst	Region	Type	RecII	Asia	Europe	America	RecID	Retail	Dealer
CTI	Asia	Retail		,	0	0	-	,	0
02	Europe	Dealer	2	0	1	0	2	0	1
cos	Asia	Dealer	3	1	0	0	3	0	1
cat	Anmerrica	Retail	4	0	0	1	4	1	0
C5	Europe	Dealer	5	0	1	0	5	0	1

Indexing OLAP Data. Join Indices

- Join index: JI(R-id, S-id) where \mathbf{R} (R-id, $\ldots) \triangleright \triangleleft$ S (S-id, ...)
- Traditional indices map the values to a list of record ids
- It materializes relational join in JI file and speeds up relational join
- In data warehouses, join index relates the values of the dimensions of a stary schema to rows in the fact table.
- E.g. fact table: Sales and two dimensions city and product
- A join index on city maintains for each distinct city a list of R=IDs of the tuples recording the Sales In the elty

- Join índices can span multiple dimensions

Output Layout Specifications

The ability to easily change views of the same data by reconfiguring how dimensions are displayed is one of the great benefits of multidimensional systems. It is due to the separation of data structure, as represented in the MDS, from data display, as represented in the multidimensional grid. The actual method will be difFerent from tool to tool, but the essence is the same. For example, the commands or actions to create Figure 3.21 are as follows:

1. Show variables nested within months along the rows of the screen.
2. Show scenarios nested within products along the columns of the screen.
3. Show stores and customer type along the pages of the screen.

Figure 3:21 A six=dimensional data display.

Figure 3.22 A different six-dimensional data display of the same MDS.

Page order dimension

Column order dimension
Product $0+$ ITP + o
Scenario o \boldsymbol{P} HHHo

January	Males, 65+	Desks		Lamps	
		Actual	Planned	Actual	Planned
	Total sales	400	550	430	500
Store 1	Direct sales	250	315	242	290
	Indirect sales	180	200	150	180
	Total sales	500	600	425	500
Store 2	Direct sales	340	390	273	335
	Indirect sales	167	200	145	165
	Total sales	375	450	400	480
Store 3	Direct sales	250	300	267	320
	Indirect sales	125	150	133	160

[=highights the values of the dimensions displayed.

Pigure 3.23 Yet a third six-dimensional data display of the same MDS.

maneanily Time
vien product

Wigure 3.28 A two-dimensional comparison.
Row-order
Store Variable
㝠

Measures-

Categorization \& Computation

Data Cube Measures: Three Categories

Distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning
E.g., count(), sum(), $\min (), \max ()$

Algebraic: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
E.g., avg(), min_N(), standard_deviation()

Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
E.g., median(), mode(), rank()

Dimension Schema Variant \& Output GenerationAn Example

Multidimensional Moodel

Computing cuboids, from Base Cuboid"No Materialization"

SELECT Sccenario.member. Tinne.member, Sales. COGS. Margin....., Profil
FROM Fax. Channel. Producl. Markel. Timc. Sccnario
WHERE Faxt.Chan-id = Channcl.Chan-id and Channcl.member ='Channel'
Fac..Prod-id = Product.PTod-id and Product.member = 'Produci'
and Fact.Mkl-id = Markcl.Mkl-id and Markcı.member = 'Markcl' and Fac.Time-id = Time.Time-id and Time.rollup of 'Year'
and Fact.Sccn-id = Scenario.Scen-id and Scenario.member = 'Actual'
UNION SELECT Sccnario,member, Time.member, Sales, COGS, Margin, ,1, Profit
FROM Fact. Channil. Product. Marke. Time. Sccnario
WHERE Fact.Chan-id = Channel.Chan-id and Channel.member s'Channel'
Fract.Prod-id = Froduct.Prod-id and Produclmember s 'Producl' and Fact.Mkt-id $=$ Market.MKl-id and Market_member $=^{\prime}$ Masket' and Fact.Time-id $=$ Time.Time-id and Time.sollup of 'Year' and Fact.Scen-id a Scenario.Scen-id and Scenariomember = "Budgec'

Computing Base (or Aggregate)
 Cuboid from Source Tables \&
 Output Generation- An Example

Example 3.4 Star schema definition. The star schema of Example 3.1 and Figure 3.4 is defined in DMQL as follows:

$$
\begin{aligned}
& \text { define cube sales_star [time, item, branch, location]: } \\
& \text { dollars_sold = sum(sales_in_dollars), units_sold = count(*) } \\
& \text { define dimension time as (time_key, day, day_of_week, month, quarter, year) } \\
& \text { define dimension item as (item_key, item_name, brand, type, supplier_type) } \\
& \text { define dimension branch as (branch_key, branch_name, branch_type) } \\
& \text { define dimension location as (location_key, street, city, province_or_state, } \\
& \text { country) }
\end{aligned}
$$

The define cube statement defines a data cube called sales_star, which corresponds to the central sales fact table of Example 3.1. This command specifies the dimensions and the two measures, dollars_sold and units_sold. The data cube has four dimensions, namely, time, item, branch, and location. A define dimension statement is used to define each of the dimensions.

Computing cuboids, from Source Tables- "No Materialization"

Example 3.7 Interpreting measures for data cubes. Many measures of a data cube can be computed by relational aggregation operations. In Figure 3.4, we saw a star schema for AllElectronics sales that contains two measures, namely, dollars_sold and units_sold. In Example 3.4, the sales_star data cube corresponding to the schema was defined using DMQL commands. "But how are these commands interpreted in order to generate the specified data cube?"

Suppose that the relational database schema of AllElectronics is the following:
time(time_key, day, day_of_week, month, quarter, year)
item(item_key, item_name, brand, type, supplier_type)
branch(branch_key, branch_name, branch_type)
location(location_key, street, city, province_or_state, country)
sales(time_key, item_key, branch_key, location_key, number_of_units_sold, price)
The DMQL specification of Example 3.4 is translated into the following SQL query, which generates the required sales_star cube. Here, the sum aggregate function, is used to compute both dollars_sold and units_sold:
select s.time_key, s.item_key, s.branch_key, s.location_key,
sum(s.number_of_units_sold * s.price), sum(s.number_of_units_sold)
from time t, item i, branch b, location l, sales s,
where s.time_key $=$ t.time_key and s.item_key $=$ i.item_key
and s.branch $_$key $=$b.branch_key and s.location_key $=$l.location_key
GroupBy, s. time-key, sitem_key, s-branch_leay, s.
location-key

The cube created in the above query is the base cuboid of the sales_star data cube. It contains all of the dimensions specified in the data cube definition, where the granularity of each dimension is at the join key level. A join key is a key that links a fact table and a dimension table. The fact table associated with a base cuboid is sometimes referred to as the base fact table.

By changing the group by clauses, we can generate other cuboids for the sales_star data cube. For example, instead of grouping by s.time.key, we can group by t.month, which will sum up the measures of each group by month. Also, removing "group by s.branch_key" will generate a higher-level cuboid (where sales are summed for all branches, rather than broken down per branch). Suppose we modify the above SQL query by removing all of the group by clauses. This will result in obtaining the total sum of dollars._sold and the total count of units-sold for the given data. This zero-dimensional cuboid is the apex cuboid of the sales star data cube. In addition, other cuboids can be generated by applying selection and/or projection operations on the base cuboid, resulting in a lattice of cuboids as described in Section 3.2.1. Each cuboid corresponds to a different degree of summarization of the given data.

Multidimensional Data- Short Quiz

Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time Hierarchical summarization paths

Questions

1. Draw A Starnet Query Model (SQM) diagram showing dimensional hierarchies on right.
2. Draw polygon that shows the view corresponding to the cuboid on the left (View a user wants to query).
3. Show a cuboid on the SQM diagram (by drawing another polygon) that dominates the cuboid in 2.
4. Show a cuboid that can't be used (cuboid that is not feasible, since it is coarser) to compute cuboid in 2.
5. Compute total number of cuboids in the data cube.
